

UHT – What?

Starring:

UHT milk is another common type of milk under dairy segment. Generally, UHT milk is the fresh milk which undergoes through the high temperature short time treatment process rather than pasteurization process. UHT milk comes in a sterilized container.

The purpose of UHT treated milk to make the milk safe for consumption with a longer shelf life [better that the raw milk itself & pasteurized milk]. UHT milk don't need the refrigeration as the treatment destroys all bacteria. Same time the treatment process preserves the original flavor, taste as well as the nutritional value.

Figure: UHT Milk in sterile pack

Why Industry performs UHT Milk:

Raw milk is a best source of microbial growth. While milking the microbes gets contaminated on to it as well from the surrounding environment. It is also to say that cow's udder has a verity of microbes incorporated which can be lessen by maintaining proper hygiene sanitation.

The objective of UHT is Food Safety, ensuring longer shelf life as well as convenience while carrying. As the treatment ensures the destroying of all micro-organisms, so it ensures public health concern to an acceptable level. It is also to say that; raw milk has a very short shelf life where as UHT process tends to provide a longer shelf life [06 - 09 months]

Differences in between Pasteurized Milk & UHT Milk:

It is clear that pasteurized milk and UHT milk both undergo through a heat treatment as well as holding time. But UHT treatment is more and more sensitive rather than the pasteurization.

For pasteurized milk, the milk is safe to consume, but the milk has a shorter shelf life [shelf life may be 15-21 days]. Pasteurized milk must be kept in freezing condition. Pasteurized milk should be consumed instantly [with or without having a further heat treatment]. While long time travelling, pasteurized milk can't be kept long time in ambient temperature. Based on the heat treatment, pasteurized milk colour, taste and texture differs a little than UHT milk. Pasteurized milk is creamier. After the heat treatment, the microbial load will be found [except pathogenic microbes]

Figure: A processing unit including UHT system

For UHT milk, the milk is safe to consume, but the milk has a longer shelf life [shelf life may be 06 – 09 months]. UHT milk can be kept in normal temperature on in the ambient condition. UHT milk can be consumed immediately. While long time travelling, UHT milk can easily be kept long time in ambient temperature [longer shelf life]. Based on the heat treatment, UHT milk colour, taste and texture differs a little than pasteurized milk. UHT milk has got a slightly brownish colour. After the heat treatment, the microbial load must be nil.

Criteria	Pasteurized Milk	UHT Milk	
Heat Treatment	Below 100C [lots of treatment point]	Over 100C [135 – 145C]	
Holding Time	30min or 15sec [based on heat]	02 – 05sec	
Shelf Life	Shorter shelf life [15 – 21 days]	Longer shelf life [06 – 09 months]	
Keeping condition	In freeze	In ambient	
Consumption	With or without having a further	Can be consumed instantly	
condition	heat treatment		

Page 2 of 9 [Ameera Consultancy] (https://ameeraconsultancy.com/)

Ameera Consultancy Sample Copy to Boost You on Another Way

Ameera

Travelling feasibility	Can't take while long time travelling	Can take easily				
Colour, taste and texture	Little bit differed from UHT milk. Have fresh milk colour and creamier.	Little bit differed from pasteurized milk. Have a slightly brownish colour than pasteurized milk				
Microbial load after industrial treatment	Microbial load will be found [except pathogenic microbes]	Microbial load must be nil.				

UHT Milk:

UHT milk is basically the raw milk that undergoes a heat treatment to a specific temperature at a specific holding time in order to destroy all microbes that present in milk. UHT is a processing technology which sterilizes liquid food by applying temperature on 135 – 145C for about 02 – 05 sec. This flash temperature and holding use to kill the bacterial spore. The widely used of UHT process is in milk industry. Apart of this, UHT process can also be applied on fruit juice, wine, cream, soy milk, soups etc.

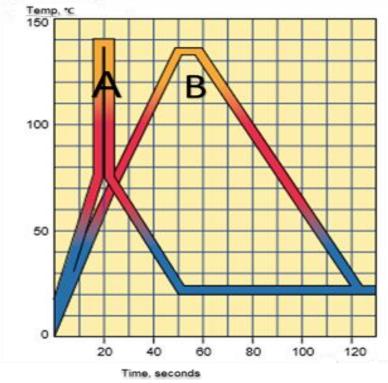


Figure: UHT Process [A]

The graphical demonstration shows that the UHT is a quicker system for micro-organism destruction. While pasteurization process the system takes a long time to reach the active temperature, whereas the UHT system takes a shorter time to reach the activated temperature.

On the other hand, UHT holding time is also very shorter in comparison with pasteurization holding time.

UHT:

The UHT method 1st developed in 1960 & the product availability ensured on 1970.

Ultra High Temperature is a process by which milk is heated up to 135 – 145C for 02 – 05 sec & then the milk is cooled quickly at 26-30C applying aseptic transfer method as well as aseptic filling.

02 Types of UHT process is available

- Direct UHT system
- Indirect UHT system

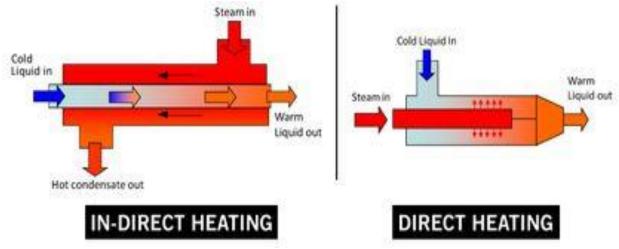


Figure: Direct Heating System & Indirect Heating System

Direct UHT System:

In direct UHT system, steam is injected into the liquid product and this heating is followed by a flash cooling system [generally, the product gets directly contact with steam]. This process requires relatively high energy consumption comparing to indirect UHT system.

In direct UHT system, the product is held at a high temperature for a short time. So, thermal damage for the sensitive product is not happened [eg. Milk]

- Injection Based High pressured steam is injected into milk maintaining fast heating and cooling. This method is suitable only for some products. A local overheating takes place, as the product comes in contact with the nozzle.
- Infusion Based A relatively low concentration of milk is pumped through a nozzle into a high pressured steam chamber. It has got a large surface contact area. Both low viscosity and high viscosity liquid products are suitable for this method.

Indirect UHT System:

In indirect UHT system, steam is injected through heat exchanger [generally, the product does not come into contact with steam]. This process required relatively low energy consumption comparing to direct UHT system. In this method most of the heat energy can be recovered.

03 Types of Heat Exchangers can be found

- Plate Heat Exchangers [PHE]
 - Page 4 of 9 [Ameera Consultancy] (https://ameeraconsultancy.com/)

- Tubular Heat Exchangers {THE]
- Scraped Surface Heat Exchangers [SSHE]

The overall UHT system maintains.

- Flash heating
- Flash cooling
- Homogenization
- Aseptic Packaging

Different types of thermal processing methods:

Name of Treatment	Temperature	Holding Time	Target	Remarks
Thermization	57C – 68C	15 min	Pathogenic bacteria	Low temperature don't change the structure and taste of milk
Batch pasteurization [LTLT] [Low Temp Long Time]	63C	30 min	Pathogenic bacteria	Long holding time changes the protein structure and taste
Flash Pasteurization [HTST] [High Temp Short Time]	72C – 74C	15 – 20 sec	Pathogenic bacteria	-
UHT [Ultra High Temperature]	135C – 140C	02 – 04 sec	Coxiella burnetii	Kills all vegetative form of microbes. Extended shelf life.
Canned Sterilization [Autoclave] [Wet Treatment]	115C – 121C	10 – 20 min		Kills all vegetative form of microbes. Extended shelf life.

Figure: UHT Milk in sterile pack

Page 5 of 9 [Ameera Consultancy] (https://ameeraconsultancy.com/)

Liquid Product Heating System

Direct Heating System

02 Types of heating process is available

- Direct heating system
- Indirect heating system

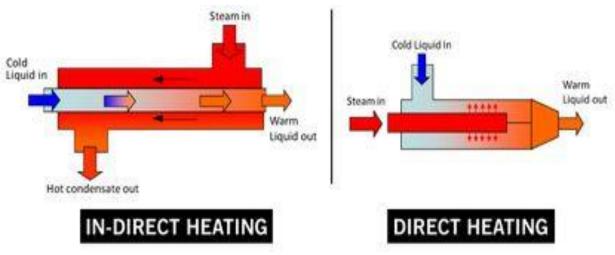


Figure: Direct Heating System & Indirect Heating System

Direct Heating System:

In direct heating system, steam is injected into the liquid product and this heating is followed by a flash cooling system [generally, the product gets directly contact with steam]. This process requires relatively high energy consumption comparing to indirect heating system.

In direct heating system, the product is held at a high temperature for a short time. So, thermal damage for the sensitive product is not happened [eg. Milk]

- Injection Based High pressured steam is injected into milk maintaining fast heating and cooling. This method is suitable only for some products. A local overheating takes place, as the product comes in contact with the nozzle.
- Infusion Based A relatively low concentration of milk is pumped through a nozzle into a high pressured steam chamber. It has got a large surface contact area. Both low viscosity and high viscosity liquid products are suitable for this method.

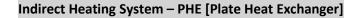


Figure: Indirect Heating System – PHE [Plant Heat Exchanger]

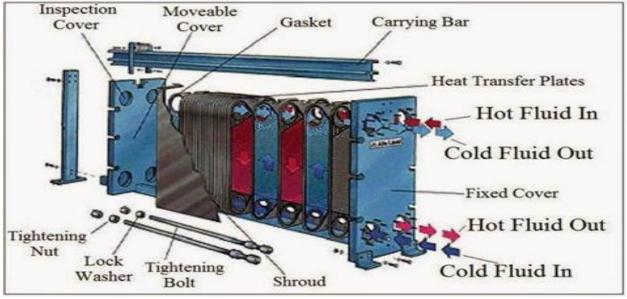


Figure: Indirect Heating System – PHE [Plant Heat Exchanger]

Application of PHE [Plate Heat Exchanger]:

- Pasteurization of Milk, Cream
- Pasteurization of Juice
- Pasteurization of Synthetic Drinks
- Pasteurization of Lachchi Drinks
- Glycol Cooler
- Batch Heating and Cooling
- Water Heater etc.

Page 7 of 9 [Ameera Consultancy] (https://ameeraconsultancy.com/)

Indirect Heating System – THE [Tubular Heat Exchanger]

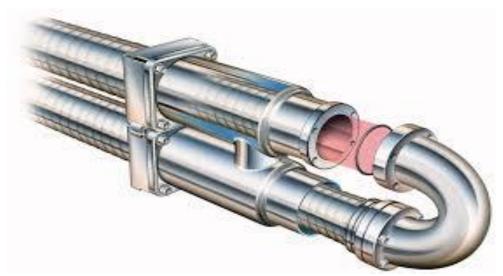


Figure: Indirect Heating System – THE [Tubular Heat Exchanger]

Figure: Indirect Heating System – THE [Tubular Heat Exchanger]

Application of THE [Tubular Heat Exchanger]:

- UHT treatment of Milk
- UHT treatment of Chocolate Milk, Mango Milk
- Pasteurization of Juice
- Pasteurization of Lachchi Drinks
- Pharmaceuticals application etc.

Page 8 of 9 [Ameera Consultancy] (https://ameeraconsultancy.com/)

Ameera Consultancy Sample Copy to Boost You on Another Way

Indirect Heating System – SSHE [Scraped Surface Heat Exchanger]

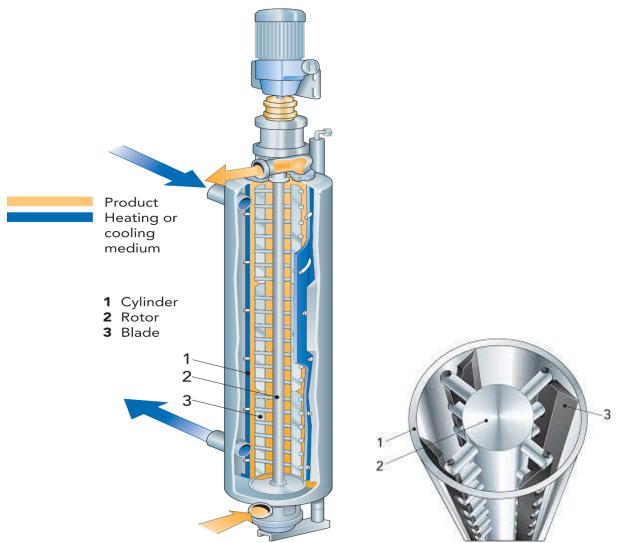


Figure: Indirect Heating System – SSHE [Scraped Surface Heat Exchanger]

Application of SSHE [Scraped Surface Heat Exchanger]:

- In Food Industry [for Heat Transfer, Crystallization and other continuous process]
- In Chemical Industry [for Heat Transfer, Crystallization and other continuous process]
- In Pharmaceutical Industry [for Heat Transfer, Crystallization and other continuous process]
- SSHE specially used for viscous, sticky products which need some degree of crystallization.