

Presentation

On

RO – O5 – Fouling Pretreatment Solution

Prepared By Md. Shafikul Islam

[Ameera Consultancy] (https://ameeraconsultancy.com/)

RO – 05 – Fouling Pretreatment Solution

Water has some Impurities on to it

Ionic Type Impurity

Non-Ionic Type Impurity

Gas Type Impurity

Particulate Type Impurity

Water Impurity – Ionic Type

Water Impurity – Non-Ionic Type

Water Impurity – Gas Type

Water Impurity – Gas Type

Carbon Di-Oxide [CO2]

Oxygen[O2]

Chlorine [Cl]

Nitrogen [N2]

Hydrogen Sulfide [H2S]

	Water Impurities & Removal System		
Water Impurities & Removal System			
Ionic Impurity		RO, Nano Filtration	
No	n-lonic Impurity	RO, Nano Filtration	
Par	ticulate Impurity	RO, Nano Filtration	
Gas	s Type Impurity	De-Gasifier	

RO Fouling

Contaminants get accumulated on Membrane Surface

Contaminants Pose the Ability to Perform Quick Plugging

RO Fouling

During Fouling, the Permeate Flow Gets Down

Fouling Incurs the Higher Operating Cost & Membrane Change

Proper Pretreatment = Minimal Chance of RO Fouling

RO Fouling Can be Caused By Colloidal or Particulate Matter [with Dirt, Silt, clay etc.] Organic Matter Biofilms/Micro-organisms [Bacteria with biofilms] Breakthrough of Filter Media Upstream [Softener Leaking]

Fouling starts in the Front End & Results High Pressure Dree

RO – Membrane Problem Result

RO – Membrane Problem Result

Water Quality will be Very Poor

Water Production will be Very Low

Tends to perform Frequent Cleaning

Tends to perform Membrane Replacement

Operating Cost will be hampered & will be **High**

R(

RO Pretreatment

RO Pretreatment – Popular Method

RO Pretreatment – Popular Methods are...

MFG [Multi Grade Filter] Using

Cartridge Filter Using

Microfiltration Unit Using

Antiscalant and Scale Inhibitor Using

Softener [with Ion-Exchange]

Sodium Bi Sulfite or Sodium Meta Bi Sulfide Injection

Granular Activated Carbon Using [GAC]

A] MGF [Multi Grade Filter] Using

MGF is a Cost Effective System & work under High Pressure

MGF is a Cost Effective System & work under High Flow Rate

To Prevent the RO Fouling

Having **03-Layers of Anthracite Coal, Sand, Garnet**

Having a Gravel Layer for Supporting the System

Media is Chosen based on Size & Density

Unfiltered water

Larger Anthracite [but Lighter] = On Top

Havier Anthracite [but Smaller] = On Bottom

Good MGF can remove Particles down to 15-20 micron

If Coagulant Use then Particle down to 05-10 micron

If, SDI > 03, then MGF is Recommended

If, Turbidity > 0.2 NTU, then MGF is Recommended

B] Cartridge Filter Using

Cartridge Filter is Very Much Useful if Placed Right after MGF

Cartridge Filter Size Should Be 05 micron

Cartridge Filter Will Ensure RO Filter Stability

The Output of Cartridge Filter will be Below 05 micron

Microfiltration Has Pore Size Ranging From 0.1-10 micron

Microfiltration is Effective against Colloid & Bacteria Particle

Hollow Fiber Type is most Commonly Used

The Recovery Rate >90%

Antiscalant are the Chemical means of Support

Antiscalant are used in Feed Water in Steady Rate

Purpose = To Reduce the "Scaling Potential"

Function = To Increase "Solubility Limit of Organic Matter"

Softener = Removes the Hardness of Water [Ca+, Mg+...]

Hard Water Tends to Degrade the Water Quality

Hard Water affects Process, Boiler, Chiller, Cooling Tower

Softener is an Ion-Exchange Process

Chlorine & Chloramine Use to Control Microbial Growth

Sodium Bi Sulfite is used to Control Residual Chlorine

Sodium Meta Bi Sulfite is used to Control Residual Cl

Chlorine & Chloramine Use to Control Microbial Growth

Appropriate Source of GAC = Coal, Coconut Shell, Wood

Transform Chlorine → Chloride Ion [Non-Oxidizer]

Sodium Bi Sulfite is used to Control Residual Chlorine

RO Monitoring is very much Important Thing

Entire RO is a Costly Item

RO Fouling tends to be the Change of Membrane

Pretreatment: 90% of Operational Problems are found here

System: 90% of Operational Problems are found here

RO – Monitoring [Pretreatment]

RO – Monitoring [System]

RO – Important Parameter Location

RO – Daily Operation & Performance Data

Feed Water pH	Permeate Water pH, Temp.
Feed Water Temperature	Permeate Water Conductivity, Turbidity
Feed Water Conductivity	Permeate Water Flow, Pressure
Feed Water Turbidity	Reject Water Flow, Pressure
Feed Water SDI	Reject Water Conductivity, Turbidity
Feed Water Flow	Percent Salt Rejection [Calculated]
Feed Water Pressure	Differential Pressure [Calculated]
Daily Graphical Trend	Percent Recovery [Calculated]

Any Question...!?

Any Question...!?

